Dr. Wilhelm, Claus: symmetric binary channel with memory;
A-Model, especial suitable for M2M communication; examples for beginners and students; to test with Excel;
For background see downloads!

Example 1

Given the "wireless short-packet (WSP) protocol" ISO/IEC 14543-3-10 for M2M (Machine to Machine) communication, $125 \mathrm{kbit} / \mathrm{s}$ data rate, $868,3 \mathrm{MHz}$. Each frame is transmitted three times in one direction without feedback.
The Header starts with 8 PRE-bits for synchronisation followed by 4 SOF-bits as the start of synchronisation: 101010101001
If in these 12 bits one or more errors occur the frame cannot start.
Find the probability $\mathbf{u}(\mathbf{k})$ for the next error bit which follows after $\mathrm{k}=12$ or more error-free bit's.
Also the probability that the frame start is wrong or not is: $1-u(k=12)$

$u(0)=1 ; u(1)=\alpha e^{-\beta} ; \quad$ where $e^{-\beta}=\left(1-p_{e}^{1 / \alpha}\right) ;$
with bit error probability $p_{e}<\mathbf{0 . O 1}$
and in practice with bundling factor $(1-\alpha) ; 0.5<\alpha<0.95$
(for an BSC-Channel, without memory is $(1-\alpha)=0 ;$)
Using Excel, the follwing can be recursively calculated:

$$
u(k+1)=u(k) \frac{k+\alpha}{k+1} e^{-\beta}
$$

given:
a) $\mathrm{pe}=0.001 ;$ alpha $=0.9$
b) $\mathrm{pe}=0.01 ;$ alpha $=0.7($ strong bundled errors $)$
result:

$$
\begin{aligned}
& 1-u(k=12 ; p e=0.001 ; \alpha=0.9)=0.27685541 \\
& 1-u(k=12 ; p e=0.01 ; \alpha=0.7)=0.66283848
\end{aligned}
$$

$$
0.66283848^{3}=0.2912213
$$

$$
P(\text { non }- \text { start } ; 3 \text { times })=0.66283848^{3}=29 \%
$$

Even with triple transfer, in 29% all of experiments a non-start occurred.

Example 2

What is the probability $\mathbf{v}(\mathbf{k})$ that after the last error bit a gap follows with a length of
a) $\mathrm{k}=0$ bits (double error);
b) $\mathrm{k}=5$ bits
c) $\mathrm{k}=48$ bits ?
with pe $=0.001$; alpha $=0.9$

1 vo 7
where

$$
v(k)=u(k)-u(k+1) ; u(0)=1
$$

similar to example 1 , the results can be calculated recursively.
the results:

$$
\begin{aligned}
& v(0)=0.10041774 \\
& v(5)=0.01349111 \\
& v(48)=0.00155455
\end{aligned}
$$

Example 3

What is the probability $p_{b}{ }^{(n)}$ that a block of length n has errors?
with pe $=0.001 ;$ alpha $=0.9 ; e^{-\beta}=0.99953584$

$$
\begin{aligned}
& p_{b}(n)=p_{e} \sum_{k=0}^{n-1} u(k) ; \quad u(k+1)=u(k) \frac{k+\alpha}{k+1} e^{-\beta} ; u(0)=1 ; u(1)=\alpha e^{-\beta} ; \\
& p_{b}(n+1)=p_{b}(n)+p_{e} \cdot u(n) ; \\
& p_{b}(1)=p_{e}
\end{aligned}
$$

the results: $p b(1)=0.001 ; p b(5)=0.00438348 ; p b(48)=0.03350905$

Example 4

We are looking for the probability of all single errors in a block of length \boldsymbol{n}.
The sum of probabilities of \boldsymbol{n} different patterns:

$p(n+1 ; g=1)=p(n ; g=1) \cdot \frac{(2 \alpha+n-1)}{n} \cdot e^{-\beta}$
with $p(n=1 ; g=1)=p_{e}=0.001 ; \alpha=0.9$
the results:
$\mathrm{p}(5 ; \mathrm{g}=1)=0.00382320$
$\mathrm{p}(31 ; \mathrm{g}=1)=0.01647384$

Example 5

Linear block code CCITT CRC 16

Given a $(48 ; 16)$ block code with block length \boldsymbol{n} and $\boldsymbol{k}=16$ control bits and 32 information bits.
The generator polynomial is

$$
x^{16}+x^{12}+x^{5}+1
$$

A false block will go undetected if the error structure is identical with the above polynomial. There are 31 positions which have the shortest undetected erroneous structures.
Total, there are $2^{16}=65536$ such undetected structures.

There are 31 possible pattern in this block of length 48;
with pe $=0.001$; alpha $=0.9$
the result is the product of four factors:

$$
\begin{array}{ll}
\mathrm{P}(31 ; \mathrm{g}=1) & =0.01345740 \\
\mathrm{v}(3) & =0.02100726 \\
\mathrm{v}(4) & =0.01645272 \\
\mathrm{v}(6) & =0.01141715
\end{array}
$$

therefore $\quad \mathbf{5 . 3 1 0 3 8 6 7 E - 8}$;
and the probability of erroneous blocks is

$$
\mathrm{pb}(48)=\mathbf{3 . 3 5 0 9 0 5 E}-2(\text { see example } 3) ;
$$

Example 6

Distributions of numbers of errors in bursts:

A burst begins with a bit error and ends when a consecutive error-free bits follow.
The number of erroneous bits in the burst comprises the burst-weight \mathbf{g}.
It is plausible that when a is equal to 1 the weight g is equal to l
Calculate the probabilities for $\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{5}$, and 20 .errors in the burst.
Given $p_{e}=0.01 ; \alpha=0.7 ; a=12$

$$
1-u(a)
$$

$P(g ; a)=u(a) \cdot[1-u(a)]^{g-1}$
$u(a=12)$ is calculated recursively as in Example 1
$u(12)=1-0.66283848=0.33716152$

results:
$P(g=1 ; 12)=0.33716152 ; P(g=2 ; 12)=0.22348363 ;$
$P(g=3 ; 12)=0.14813355 ; P(g=4 ; 12)=0.09818862$
$P(g=5 ; 12)=0.06508319 ; P(g=20 ; 12)=0.0001632834$

Example 7

Distribution $p(l ; n)$ of burst length l in blocks of length $\boldsymbol{n}=\mathbf{5}$ bits
where $l=1,2,3, \ldots . n ; \quad$ bit error probability $p_{e}=0.0008488$;
bundling factor $(1-\alpha)=0.16 ; \alpha=0.84$; and $e^{-\beta}=\left(1-p_{e}^{1 / \alpha}\right)=0.9997792931$.

The formula is derived in downloads: „channel model part 1"

$$
\begin{aligned}
p(l ; n)= & p_{\mathrm{e}} \frac{2 \alpha(2 \alpha+1) \cdots(2 \alpha+n-l-1)}{(n-l)!} \mathrm{e}^{-\beta(n-l)} \\
& \times\left(1-\frac{\alpha}{1!} \mathrm{e}^{-\beta}-\frac{\alpha(1-\alpha)}{2!} \mathrm{e}^{-2 \beta}-\cdots-\frac{\alpha(1-\alpha) \cdots(l-2-\alpha)}{(l-1)!} \mathrm{e}^{-(l-1) \beta}\right) .
\end{aligned}
$$

For calculation (73), it is better to make the following transformation

$$
p(l, n)=p_{u}(n-l+1) \cdot r_{s}(l-1)
$$

and calculate each of these factors recursively.
Where $p_{u}(n-l+1)$ is the probability of a single error in the block of length $n=a+b+l$ (see Example 4).
The factor $r_{s}(l-1)$ is the probability of a burst of length \boldsymbol{l}.
To prepare for programming in higher languages ,such as Matlab or $\boldsymbol{C + +}$, the following provide test-solutions, programmable in Excel, which are helpful in understanding the method used in the solutions.

Next we calculate recursively:

$$
\begin{aligned}
& p_{u}(l=5 ; n=5)=p_{e} \\
& p_{u}(l=4 ; n=5)=p_{u}(5 ; 5) \cdot(2 \alpha / 1) \cdot e^{-\beta} \\
& p_{u}(l=3 ; n=5)=p_{u}(4 ; 5) \cdot((2 \alpha+1) / 2) \cdot e^{-\beta} \\
& p_{u}(l=2 ; n=5)=p_{u}(3 ; 5) \cdot((2 \alpha+2) / 3) \cdot e^{-\beta} \\
& p_{u}(l=1 ; n=5)=p_{u}(2 ; 5) \cdot((2 \alpha+3) / 4) \cdot e^{-\beta}
\end{aligned}
$$

and also

$$
\begin{aligned}
& r_{s}(l=1)=1 \\
& r_{s}(l=2)=r_{s}(l=1)-(\alpha / 1!) \cdot e^{-\beta} \\
& r_{s}(l=3)=r_{s}(l=2)-\left((\alpha \cdot(1-\alpha) / 2!) \cdot e^{-2 \beta}\right. \\
& r_{s}(l=4)=r_{s}(l=3)-\left((\alpha \cdot(1-\alpha) \cdot(2-\alpha) / 3!) \cdot e^{-3 \beta}\right. \\
& r_{s}(l=5)=r_{s}(l=4)-\left((\alpha \cdot(1-\alpha) \cdot(2-\alpha) \cdot(3-\alpha) / 4!) \cdot e^{-4 \beta}\right.
\end{aligned}
$$

The result calculated with Excel:

pe $=0.0008488$	alpha $=0.84$	$\mathrm{n}=5$		$\mathrm{pb}(5)=$		
length I	pu	rs	$\mathrm{p}(1 ; \mathrm{n}=5)=\mathrm{pu}^{*} \mathrm{ps}$	$3,4334588506 \mathrm{E}-03$	measured	simulated
				$10^{\wedge} 3^{*} \mathrm{p}(1 ; \mathrm{n}=5) / \mathrm{pb}(5)$		
1	0,0027399865	1,0000000000	$2,7399865000 \mathrm{E}-03$	798	800	799
2	0,0023423858	0,1601853938	$3,7521599180 \mathrm{E}-04$	109	87	108
3	0,0019099752	0,0930150535	$1,7765644541 \mathrm{E}-04$	52	59	51
4	0,0014256693	0,0670482543	$9,5588637774 \mathrm{E}-05$	28	34	28
5	0,0008488000	0,0530292775	$4,5011250742 \mathrm{E}-05$	13	20	13
		Summe=pb(5)	$3,4334588257 \mathrm{E}-03$	1000	1000	999

It can be seen that the larger length occurs more frequently because in this model a memory does not proceed beyond the last error bit. On the other hand, the χ^{2}-Test shows no significant differenz.

But in comparing codes or procedures this A-Model is sufficient and easy to use in most cases. The advantage is, having the first easy method to calculate sums of events

Example 8

Distribution $p(l ; n)$ of burst length l in blocks of length $\boldsymbol{n}=15$ bits
where $l=1,2,3, \ldots . . n ; \quad$ bit error probability $p_{e}=0.0008 ; \alpha=0.8 ; e^{-\beta}=0.9998548645$
On can it recursively develop in the same way as in Example 7 from the basic Formula (73).

The result calculated with Excel:

$\mathrm{pe}=0.00085$		pb (15)=		5806 err.blocks
length I	p(l;n=15)	7,9153586826E-03	calculated	simulated
		$\mathrm{p}(\mathrm{l} \mathrm{n}=15 \mathrm{~s} / \mathrm{pb}(15)$	5806*p(lin= 15 /pb $\mathrm{pb}(15)$	
1	0,0047821493	0,6041607831	3508	3469
2	0,0009177902	0,1159505509	673	750
3	0,0005267615	0,0665492899	386	355
4	0,0003681637	0,0465125732	270	293
5	0,0002794990	0,0353109709	205	195
6	0,0002216502	0,0280025466	163	168
7	0,0001802212	0,0227685450	132	128
8	0,0001485954	0,0187730469	109	111
9	0,0001232668	0,0155731161	90	267
10	0,0001021736	0,0129082716	75	(sum of $9+10+11+12$)
11	8,3988972658E-05	0,0106108865	62	
12	6,7771249004E-05	0,0085619934	50	
13	5,2749022590E-05	0,0066641355	39	70
14	3,8106656360E-05	0,0048142678	28	(sum of 13+14+15)
15	2,2471904462E-05	0,0028390254	16	
Sum total	7,9153587051E-03	1,0000000028E+00	5806	5806

